
Analytical ultracentrifugation - density gradient

AUC - density gradient

Aim of the experiment

Often the density of a sedimenting particle is unknown or may even be the

main object of investigation. The density gradient experiment is designed

to determine exclusively particle densities. For this purpose, an additional

component with high density is added to the system in question. When a

high centrifugal field is applied, a concentration and thus a density gradient

is established along the radial coordinate. Dispersed particles accumulate in

the cell at the position where the density of the solvent mixture corresponds

to their own density. In addition to a density distribution, the approximate

molar masses of the separated components are also accessible. The accuracy

of the separation of individual components reaches the fourth decimal place

of the density.

Conducting a density gradient experiment

The additional component needs to be chosen with care. Typical gradient

materials are sugars and salts for aqueous systems, mixable organic com-

pounds of high density for organic solutions. Then, the appropriate concen-

tration ratio is selected on the basis of theoretical calculations. The following

criteria must be taken into account:

� The expected density at the meniscus must be smaller, the density at

the cell bottom larger than the (assumed) density of the particles in

question.

� The initial density of the mixture at the beginning of the experiment

should be higher than the density of the particles. Otherwise the par-

ticles could sediment and pellet irreversibly at the cell bottom before

the gradient is established.

� The higher density component added to the solvent must have a sub-

stantially higher density than the solvent to generate a significant gra-

dient.
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� The expected density of the particle should be as close as possible to

the center of the gradient.

The last point is aimed at the fact that the steepness of the gradient depends

not only on solvent composition but also on rotor speed. An optimal choice

of the solvent composition allows to zoom into the center of the gradient by

reducing the rotor speed. However, the particles must neither completely

sediment nor float.

The cell radius at which the particles accumulate is recorded and the solution

density at this location is measured via the refractive index or calculated from

the run parameters using certain assumptions. The calculation by means of

the classical Hermans-Ende approach is still subject to current research.

For detection, the otherwise rarely used Schlieren optics is best suited.

Absorbance optics is limited to systems with absorbing particles (and non

absorbant gradients); interference optics often cannot resolve the steep re-

fractive index gradients.

The system should not be chemically changed by the addition of the gradi-

ent forming component. This applies especially for micellar and other self

assembling systems.

Mathematical description

In the following a simplified derivation of the density gradient is given. The

density of the solvent mixture is sought as a function of the cell radius r.

Experimental parameters are the composition of the mixture, expressed by

the volume fractions φk, and the angular velocity ω of the rotor.

The gradient is governed by the equilibrium of sedimentation and diffusion,

as formulated in Lamm’s differential equation. In the following, however, a

thermodynamic derivation is used. According to this, the equilibrium condi-

tion of ultracentrifugation according to Goldberg can be written as:

Mk ω
2r
(

1 − Ṽ2,k %
)

=
dµk
dr

(1)

where µk is the chemical potential of component k and Mk its molar mass, ω

is the rotor’s angular velocity, r the respective observation radius, Ṽ2,k is the
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molar specific volume of component k, and % is the density of the solution at

this cell radius. The density of the mixture is

% =
s∑

k=0

φk

Ṽ2,k
(2)

φk is the volume fraction of component k. The use of the volume fraction

instead of the mass fraction assumes volume additivity. In the following,

a binary mixture of solvents is assumed, usually a mixture of the solvent

suitable for the substance to be investigated (index 1) with a significantly

denser component (index 2), which must not influence the behavior of the

solution or dispersion. If eq. (2) is written as

% = φ1 %1 + φ2 %2, (3)

then eq. (1) can be written as

M2 ω
2r φ1

%2 − %1
%2

=
dµ2

dr
(4)

The following applies to the chemical potential:

(dµk)T, p = (d∆µk)T, p (5)

The right term can be expressed by the relation

(∆µk)T, p =

(
∂∆Gm

∂nk

)
T, p

, (6)

because the relation between the mixing energy Gm and the amount of sub-

stance nk of component k can be described according to Gibbs via the equa-

tion:

∆Gm = RT (n1 lnφ1 + n2 lnφ2) (7)

Here, ideal miscibility of the components is assumed (same molar volumes,

no excess volume, no mixing heat). Taking into account

φ1 = f(n2) =
n1V1

n1V1 + n2V2
and φ2 = f(n2) =

n2V2
n1V1 + n2V2

(8)

(with the molar volumes Vk of the components) we obtain the derivative

∂∆Gm

∂n2

= (dµ2)T, p = RT

[
lnφ2 +

(
1 − V2

V1

)
(1 − φ2)

]
(9)
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The derivative of eq. (9) with respect to φ2 gives

dµ2

dφ2

= RT

[
1

φ2

+
V2
V1

− 1

]
, (10)

and with φ0 +φ1 = 1 under (preliminary) neglect of density effects, the chain

rule is applied:

dµ2

dr
=
dµ2

dφ2

· dφ2

dr
(11)

establishing a relationship between the composition and the experimental

parameters from eqs. (4) and (11):

M2 ω
2r φ1

%2 − %1
%2

= RT

[
1

φ2

+
V2
V1

− 1

]
· dφ2

dr
(12)

With the additional simplification of comparable molar volumes of the two

components, the integration results in

φ2

φ1

= α eβ r
2

; β =
ω2M2

2RT
· %2 − %1

%2
(13)

Equation ((13) is known as the Hermans-Ende-equation. Another notation

is:

φ2(r) =
α eβ r

2

1 + α eβ r2
(14)

The composition of the mixture is obtained as a function of the cell radius.

The integration constant α is calculated from the mass balance as a boundary

condition for a component at the beginning and end of the experiment:∫ rb

rm

φ2(r) dr = φinitial2 · r
2
b − r2m

2
(15)

Here rm and rb are the cell radii of the meniscus and the cell bottom, respec-

tively, and one obtains α as

α =
exp

[
β (r2b − r2m) φinitial2

]
− 1

exp [β r2b ] − exp
[
β r2bφ

initial
2 + β r2m φ

initial
1

] (16)

Now one of the volume fractions and thus the density is obtained from Eq.

(14):

%(r) = [1 − φ2(r)] · %1 + φ2(r) · %2 (17)
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Pressure correction

A pressure correction is applied to the final calculated density gradient. With

the compressibility of the mixture κges, the corrected density %korr as a func-

tion of the local pressure p(r) is obtained according to

%korr(r) = %(r) · [1 + κges(r) · p(r)] (18)

The local pressure is calculated from the uncorrected local density:

p(r) =
1

2
%(r)ω2

[
r2 − r2m

]
(19)

and the total compressibility is composed additively from the compressibili-

ties of the components using the local volume fractions:

κges(r) = [1 − φ2(r)] · κ1 + φ2(r) · κ2 (20)

Evaluation

The density gradient is calculated from the experimental parameters for all

radial positions. The detected intensity profile is plotted vs. the equivalent

densities. Fig. 1 illustrates this by superimposing the (calculated) density

gradient (right axis) and the registered concentration (left axis).

Figure 1: Density gradient in equilibrium (right axis) and accumulation of

the material at the cell radius where its density is matched.
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