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Analytical ultracentrifugation was developed in the 1920s. Originally, it was

developed to measure the particle size distributions of gold sols. Subse-

quently, it was used mainly in biochemistry for the determination of molar

masses and sedimentation coefficients. After commonly being substituted in

the 1970s by other, more modern methods (light scattering, gel permeation

chromatography, gel electrophoresis), there has been a renaissance for AUC

in the recent decades, due to newly emerging fields in colloid research and

the investigation of complex systems in biochemistry. New applications have

been found in addition to the traditional fields of application. Among others,

the following properties prove AUC to be valuable in colloid and biochemical

research:

1. AUC is an absolute method.

2. AUC is a fractionating method, particularly feasible for investigating

mixtures.

3. AUC targets on geometric (size, shape, structure) und thermodynamic

properties (G, H, S, interaction constants).

4. A maximum rotational speed of 60,000 rpm, equivalent to a 260,000fold

of Earth’s gravity, makes AUC feasible for a large range of particles sizes

(1 to 1000 nm) and masses (1000 to millions of Da).

5. A large scope of solvents can be used.

6. Detection is versatile, due to various optical systems that may be, in

part, operated synchronously.

7. Complex mixtures are fractionated with a high level of statistical secu-

rity, as all particles are registered.

8. Resolution of particles is possible down to an Ångström range.

For industrial applications, semi-automated instruments are in use for prod-

uct control. In the biochemical context, AUC is widely used in research and

development, for approval procedures by authorities and for batch verifica-

tion.
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Forces in the sedimentation cell

A particle in a sedimentation field

Figure 1: Forces in the sedimentation

cell

is exposed to three forces: the cen-

trifugal force Fz is opposed by buoy-

ancy Fb and friction Ff . In ad-

dition, it is subject to diffusion,

which is discussed elsewhere.

As these forces lie on one spatial

coordinate, they need not be treated

as vectors.

The centrifugal force Fz is propor-

tional to the graviational field:

Fz = ω2 r ·m, (1)

where m is the particle’s mass, ω is the rotor’s angular velocity, and r the

radial distance from the center of rotation. Thus, centrifugal force will in-

crease with increasing r during the course of sedimentation. The opposing

force of buoyancy according to Archimedes

Fb = −ω2 r ·m01, (2)

is proportional to the mass of displaced solvent m01. The frictional force Ff

is also directed into the opposite direction, it is proportional to the particle’s

velocity u:

Ff = −f · u, (3)

where f is the frictional coefficient. Equilibrium of the three forces is quickly

attained (< 1 ms)

Fz + Fb + Ff = 0, (4)

establishing a stationary state with a constant sedimentation rate u at the

given position r.

The mass of the displaced solvent is the product of its density % and the

particle’s volume VP . The latter can be expressed in terms of its mass m and
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it partial specific volume v̄: 1

m01 = VP · %1 = m v̄ % (5)

Eq. (1) through (4) lead to:

m (1 − v̄ %)

f
=

u

ω2 r
≡ s (6)

Thus, the ratio of sedimentation velocity to centrifugal force is constant and

referred to as the sedimentation coefficient s. Its dimension is time; the unit

is usually Svedberg [S], where 10−13 s = 1 S. The frictional coefficient f can

be expressed by the diffusion coefficient d according to Einstein:

f =
kT

D
, (7)

transforming eq. (6) into the Svedberg equation:

M =
sRT

D (1 − v̄ %)
, (8)

which allows to calculate the particle’s molecular mass from the transport

properties s and D.

For a rigid sphere, the frictional coefficient f0 may be replaced according to

Stokes

f0 = 6π η Rh , (9)

yielding Rh, the hydrodynamic radius for this sphere. η is the solvent’s

viscosity. This transforms eq. (7) into the Stokes-Einstein relationship

D =
kT

6 π η Rh

, (10)

and from eq. (6)

s =
m (1 − v̄ %)

6π η Rh

, (11)

allowing to calculate the particle’s radius from readily available parameters.

This applies to rigid spheres where f = f0. Furthermore, the sphere has

a fixed relationship between mass, size, and density. Replacing density by

1In AUC literature, the symbol v̄ has been established - the thermodynamically correct

expression would be Ṽ2.
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%P = 1/v̄ and replacing its mass m by the product of %P and its volume

(4
3
π R3

h), eq. 11 is simplified:

d2 =
18 η s

%P − %
(12)

For particles that are no compact spheres, the simplifications due to f =

f0 do not apply, and using the Svedberg equation (8) to calculate molar

masses from sedimentation coefficients requires either a diffusion coefficient or

other terms of expressing this property. Commonly, the frictional properties

of an object other than compact and spherical are expressed in terms of

the frictional coefficient f/f0, giving a dimensionless factor for how much

slower the particle sediments, as would the compact sphere of equal mass

and density.

The frictional coefficient is defined as

f

f0
=
M (1 − v̄%)

NA · 6π η s
· 3

√
4 π NA

3 v̄ M
(13)

In modern data evaluation, it is common to use f/f0 as a fit parameter.

Global fits of measurement data to approximate solutions of Lamms differ-

ential equation then yield not only a sedimentation coefficient distribution,

but also a fit result for f/f0 and, thus, a molecular mass and/or size distri-

bution.
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